Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Proteome Res ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373055

RESUMO

Huanglongbing (HLB) is a fatal citrus disease that is currently threatening citrus varieties worldwide. One putative causative agent, Candidatus Liberibacter asiaticus (CLas), is vectored by Diaphorina citri, known as the Asian citrus psyllid (ACP). Understanding the details of CLas infection in HLB disease has been hindered by its Candidatus nature and the inability to confidently detect it in diseased trees during the asymptomatic stage. To identify early changes in citrus metabolism in response to inoculation of CLas using its natural psyllid vector, leaves from Madam Vinous sweet orange (Citrus sinensis (L.) Osbeck) trees were exposed to CLas-positive ACP or CLas-negative ACP and longitudinally analyzed using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry; data available in Dryad: 10.25338/B83H1Z), and metabolomics (proton nuclear magnetic resonance). At 4 weeks postexposure (wpe) to psyllids, the initial HLB plant response was primarily to the ACP and, to a lesser extent, the presence or absence of CLas. Additionally, analysis of 4, 8, 12, and 16 wpe identified 17 genes and one protein as consistently differentially expressed between leaves exposed to CLas-positive ACP versus CLas-negative ACP. This study informs identification of early detection molecular targets and contributes to a broader understanding of vector-transmitted plant pathogen interactions.

2.
Int J Med Mushrooms ; 25(11): 27-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37831510

RESUMO

Mushrooms have two components, the fruiting body, which encompasses the stalk and the cap, and the mycelium, which supports the fruiting body underground. The part of the mushroom most commonly consumed is the fruiting body. Given that it is more time consuming to harvest the fruiting body versus simply the mycelia, we were interested in understanding the difference in metabolite content between the fruiting bodies and mycelia of four widely consumed mushrooms in Taiwan: Agrocybe cylindracea (AC), Coprinus comatus (CC), Hericium erinaceus (HE), and Hypsizygus marmoreus (HM). In total, we identified 54 polar metabolites using 1H NMR spectroscopy that included sugar alcohols, amino acids, organic acids, nucleosides and purine/pyrimidine derivatives, sugars, and others. Generally, the fruiting bodies of AC, CC, and HM contained higher amounts of essential amino acids than their corresponding mycelia. Among fruiting bodies, HE had the lowest essential amino acid content. Trehalose was the predominant carbohydrate in most samples except for the mycelia of AC, in which the major sugar was glucose. The amount of adenosine, uridine, and xanthine in the samples was similar, and was higher in fruiting bodies compared with mycelia, except for HM. The organic acid and sugar alcohol content between fruiting bodies and mycelia did not tend to be different. Although each mushroom had a unique metabolic profile, the metabolic profile of fruiting bodies and mycelia were most similar for CC and HE, suggesting that the mycelia of CC and HE may be good replacements for their corresponding fruiting bodies. Additionally, each mushroom species had a unique polar metabolite fingerprint, which could be utilized to identify adulteration.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Carpóforos/química , Agaricales/química , Basidiomycota/química , Micélio/química , Açúcares/análise , Açúcares/metabolismo
3.
Gut Microbes ; 15(2): 2257273, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741856

RESUMO

Maternal secretor status has been shown to be associated with the presence of specific fucosylated human milk oligosaccharides (HMOs), and the impact of maternal secretor status on infant gut microbiota measured through 16s sequencing has previously been reported. None of those studies have confirmed exclusive breastfeeding nor investigated the impact of maternal secretor status on gut microbial fermentation products. The present study focused on exclusively breastfed (EBF) Indonesian infants, with exclusive breastfeeding validated through the stable isotope deuterium oxide dose-to-mother (DTM) technique, and the impact of maternal secretor status on the infant fecal microbiome and metabolome. Maternal secretor status did not alter the within-community (alpha) diversity, between-community (beta) diversity, or the relative abundance of bacterial taxa at the genus level. However, infants fed milk from secretor (Se+) mothers exhibited a lower level of fecal succinate, amino acids and their derivatives, and a higher level of 1,2-propanediol when compared to infants fed milk from non-secretor (Se-) mothers. Interestingly, for infants consuming milk from Se+ mothers, there was a correlation between the relative abundance of Bifidobacterium and Streptococcus, and between each of these genera and fecal metabolites that was not observed in infants receiving milk from Se- mothers. Our findings indicate that the secretor status of the mother impacts the gut microbiome of the exclusively breastfed infant.


Assuntos
Microbioma Gastrointestinal , Microbiota , Lactente , Feminino , Humanos , Aleitamento Materno , Leite Humano/microbiologia , Oligossacarídeos/metabolismo , Metaboloma
4.
Nutr Res ; 118: 12-28, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536013

RESUMO

Little is known about how combining a probiotic with prebiotic dietary fiber affects the ability of either biotic to improve health. We hypothesized that prebiotic, high-amylose maize type 2-resistant starch (RS) together with probiotic Lactiplantibacillus plantarum NCIMB8826 (LP) as a complementary synbiotic results in additive effects on the gut microbiota in diet-induced obese mice and other body sites. Diet-induced obese C57BL/6J male mice were fed a high-fat diet adjusted to contain RS (20% by weight), LP (109 cells every 48 hours), or both (RS+LP) for 6 weeks. As found for mice fed RS, cecal bacterial alpha diversity was significantly reduced in mice given RS+LP compared with those fed LP and high-fat controls. Similarly, both RS+LP and RS also conferred lower quantities of cecal butyrate and serum histidine and higher ileal TLR2 transcript levels and adipose tissue interleukin-6 protein. As found for mice fed LP, RS+LP-fed mice had higher colonic tissue TH17 cytokines, reduced epididymal fat immune and oxidative stress responses, reduced serum carnitine levels, and increased transcript quantities of hepatic carnitine palmitoyl transferase 1α. Notably, compared with RS and LP consumed separately, there were also synergistic increases in colonic glucose and hepatic amino acids as well antagonistic effects of LP on RS-mediated increases in serum adiponectin and urinary toxin levels. Our findings show that it is not possible to fully predict outcomes of synbiotic applications based on findings of the probiotic or the prebiotic tested separately; therefore, studies should be conducted to test new synbiotic formulations.


Assuntos
Dieta Hiperlipídica , Amido Resistente , Masculino , Camundongos , Animais , Camundongos Obesos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Amido/farmacologia , Amido/metabolismo , Carnitina
5.
Microbiome ; 11(1): 194, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635250

RESUMO

BACKGROUND: Bifidobacteria represent an important gut commensal in humans, particularly during initial microbiome assembly in the first year of life. Enrichment of Bifidobacterium is mediated though the utilization of human milk oligosaccharides (HMOs), as several human-adapted species have dedicated genomic loci for transport and metabolism of these glycans. This results in the release of fermentation products into the gut lumen which may offer physiological benefits to the host. Synbiotic pairing of probiotic species with a cognate prebiotic delivers a competitive advantage, as the prebiotic provides a nutrient niche. METHODS: To determine the fitness advantage and metabolic characteristics of an HMO-catabolizing Bifidobacterium strain in the presence or absence of 2'-fucosyllactose (2'-FL), conventionally colonized mice were gavaged with either Bifidobacterium pseudocatenulatum MP80 (B.p. MP80) (as the probiotic) or saline during the first 3 days of the experiment and received water or water containing 2'-FL (as the prebiotic) throughout the study. RESULTS: 16S rRNA gene sequencing revealed that mice provided only B.p. MP80 were observed to have a similar microbiota composition as control mice throughout the experiment with a consistently low proportion of Bifidobacteriaceae present. Using 1H NMR spectroscopy, similar metabolic profiles of gut luminal contents and serum were observed between the control and B.p. MP80 group. Conversely, synbiotic supplemented mice exhibited dramatic shifts in their community structure across time with an overall increased, yet variable, proportion of Bifidobacteriaceae following oral inoculation. Parsing the synbiotic group into high and moderate bifidobacterial persistence based on the median proportion of Bifidobacteriaceae, significant differences in gut microbial diversity and metabolite profiles were observed. Notably, metabolites associated with the fermentation of 2'-FL by bifidobacteria were significantly greater in mice with a high proportion of Bifidobacteriaceae in the gut suggesting metabolite production scales with population density. Moreover, 1,2-propanediol, a fucose fermentation product, was only observed in the liver and brain of mice harboring high proportions of Bifidobacteriaceae. CONCLUSIONS: This study reinforces that the colonization of the gut with a commensal microorganism does not guarantee a specific functional output. Video Abstract.


Assuntos
Actinobacteria , Bifidobacterium pseudocatenulatum , Simbióticos , Humanos , Animais , Camundongos , RNA Ribossômico 16S/genética , Leite Humano , Oligossacarídeos , Bifidobacterium , Prebióticos
6.
Metabolites ; 13(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37623848

RESUMO

Proline betaine (Pro-B) has been identified as a biomarker of dietary citrus intake, yet gaps remain in its validation as a quantitative predictor of intake during various physiological states. This study quantified sources of within-individual variation (WIV) in urinary Pro-B concentration during pregnancy and assessed its correlation with the reported usual intake of citrus fruit and juice. Pro-B concentrations were determined by 1H-NMR spectroscopy in spot and 24-h urine specimens (n = 255) collected throughout pregnancy from women participating in the MARBLES cohort study. Adjusted linear or log mixed effects models quantified WIV and tested potential temporal predictors of continuous or elevated Pro-B concentration. Pearson or Spearman correlations assessed the relationship between averaged repeated biomarker measures and usual citrus intake reported by food frequency questionnaires. The proportion of variance in urinary Pro-B attributable to WIV ranged from 0.69 to 0.74 in unadjusted and adjusted models. Citrus season was a significant predictor of Pro-B in most analyses (e.g., adjusted ß [95% CI]: 0.52 [0.16, 0.88] for non-normalized Pro-B), while gestational age predicted only non-normalized Pro-B (adjusted ß [95% CI]: -0.093 [-0.18, -0.0038]). Moderate correlations (rs of 0.40 to 0.42) were found between reported usual citrus intake and averaged repeated biomarker measurements, which were stronger compared to using a single measurement. Given the high degree of WIV observed in urinary Pro-B, multiple samples per participant are likely needed to assess associations between citrus consumption and health outcomes.

7.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298406

RESUMO

Developmental disabilities are often associated with alterations in metabolism. However, it remains unknown how early these metabolic issues may arise. This study included a subset of children from the Markers of Autism Risks in Babies-Learning Early Signs (MARBLES) prospective cohort study. In this analysis, 109 urine samples collected at 3, 6, and/or 12 months of age from 70 children with a family history of ASD who went on to develop autism spectrum disorder (ASD n = 17), non-typical development (Non-TD n = 11), or typical development (TD n = 42) were investigated by nuclear magnetic resonance (NMR) spectroscopy to measure urinary metabolites. Multivariate principal component analysis and a generalized estimating equation were performed with the objective of exploring the associations between urinary metabolite levels in the first year of life and later adverse neurodevelopment. We found that children who were later diagnosed with ASD tended to have decreased urinary dimethylamine, guanidoacetate, hippurate, and serine, while children who were later diagnosed with Non-TD tended to have elevated urinary ethanolamine and hypoxanthine but lower methionine and homovanillate. Children later diagnosed with ASD or Non-TD both tended to have decreased urinary 3-aminoisobutyrate. Our results suggest subtle alterations in one-carbon metabolism, gut-microbial co-metabolism, and neurotransmitter precursors observed in the first year of life may be associated with later adverse neurodevelopment.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Lactente , Humanos , Transtorno do Espectro Autista/diagnóstico , Estudos Prospectivos , Metaboloma , Carbonato de Cálcio
8.
J Nutr Biochem ; 119: 109405, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37311489

RESUMO

Infancy and childhood represent a high-risk period for developing iron deficiency (ID) and is a period of increased susceptibility to infectious disease. Antibiotic use is high in children from low-, middle-, and high-income countries, and thus we sought to determine the impact of antibiotics in the context of ID. In this study, a piglet model was used to assess the impact of ID and antibiotics on systemic metabolism. ID was induced by withholding a ferrous sulfate injection after birth to piglets in the ID group and providing an iron deficient diet upon weaning on postnatal day (PD) 25. Antibiotics (gentamicin and spectinomycin) were administered on PD34-36 to a set of control (Con*+Abx) and ID piglets (ID+Abx) after weaning. Blood was analyzed on PD30 (before antibiotic administration) and PD43 (7 days after antibiotic administration). All ID piglets exhibited growth faltering and had lower hemoglobin and hematocrit compared to control (Con) and Con*+Abx throughout. The metabolome of ID piglets at weaning and sacrifice exhibited elevated markers of oxidative stress, ketosis, and ureagenesis compared to Con. The impact of antibiotics on Con*+Abx piglets did not result in significant changes to the serum metabolome 7-days after treatment; however, the impact of antibiotics on ID+Abx piglets resulted in the same metabolic changes observed in ID piglets, but with a greater magnitude when compared to Con. These results suggest that antibiotic administration in the context of ID exacerbates the negative metabolic impacts of ID and may have long lasting impacts on development.


Assuntos
Antibacterianos , Deficiências de Ferro , Animais , Suínos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Dieta , Metaboloma , Ferro , Desmame
9.
Am J Clin Nutr ; 117 Suppl 1: S61-S86, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37173061

RESUMO

Human milk contains all of the essential nutrients required by the infant within a complex matrix that enhances the bioavailability of many of those nutrients. In addition, human milk is a source of bioactive components, living cells and microbes that facilitate the transition to life outside the womb. Our ability to fully appreciate the importance of this matrix relies on the recognition of short- and long-term health benefits and, as highlighted in previous sections of this supplement, its ecology (i.e., interactions among the lactating parent and breastfed infant as well as within the context of the human milk matrix itself). Designing and interpreting studies to address this complexity depends on the availability of new tools and technologies that account for such complexity. Past efforts have often compared human milk to infant formula, which has provided some insight into the bioactivity of human milk, as a whole, or of individual milk components supplemented with formula. However, this experimental approach cannot capture the contributions of the individual components to the human milk ecology, the interaction between these components within the human milk matrix, or the significance of the matrix itself to enhance human milk bioactivity on outcomes of interest. This paper presents approaches to explore human milk as a biological system and the functional implications of that system and its components. Specifically, we discuss study design and data collection considerations and how emerging analytical technologies, bioinformatics, and systems biology approaches could be applied to advance our understanding of this critical aspect of human biology.


Assuntos
Lactação , Leite Humano , Feminino , Lactente , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente , Aleitamento Materno , Fórmulas Infantis
10.
Front Nutr ; 10: 1146804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255938

RESUMO

Background: Maternal obesity has been associated with a higher risk of pregnancy-related complications in mothers and offspring; however, effective interventions have not yet been developed. We tested two interventions, calorie restriction and pravastatin administration, during pregnancy in a rhesus macaque model with the hypothesis that these interventions would normalize metabolic dysregulation in pregnant mothers leading to an improvement in infant metabolic and cognitive/social development. Methods: A total of 19 obese mothers were assigned to either one of the two intervention groups (n = 5 for calorie restriction; n = 7 for pravastatin) or an obese control group (n = 7) with no intervention, and maternal gestational samples and postnatal infant samples were compared with lean control mothers (n = 6) using metabolomics methods. Results: Gestational calorie restriction normalized one-carbon metabolism dysregulation in obese mothers, but altered energy metabolism in her offspring. Although administration of pravastatin during pregnancy tended to normalize blood cholesterol in the mothers, it potentially impacted the gut microbiome and kidney function of their offspring. In the offspring, both calorie restriction and pravastatin administration during pregnancy tended to normalize the activity of AMPK in the brain at 6 months, and while results of the Visual Paired-Comparison test, which measures infant recognition memory, was not significantly impacted by either of the interventions, gestational pravastatin administration, but not calorie restriction, tended to normalize anxiety assessed by the Human Intruder test. Conclusions: Although the two interventions tested in a non-human primate model led to some improvements in metabolism and/or infant brain development, negative impacts were also found in both mothers and infants. Our study emphasizes the importance of assessing gestational interventions for maternal obesity on both maternal and offspring long-term outcomes.

11.
Biomark Res ; 11(1): 20, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36803569

RESUMO

BACKGROUND: Aging and diet are risks for metabolic diseases. Bile acid receptor farnesoid X receptor (FXR) knockout (KO) mice develop metabolic liver diseases that progress into cancer as they age, which is accelerated by Western diet (WD) intake. The current study uncovers the molecular signatures for diet and age-linked metabolic liver disease development in an FXR-dependent manner. METHODS: Wild-type (WT) and FXR KO male mice, either on a healthy control diet (CD) or a WD, were euthanized at the ages of 5, 10, or 15 months. Hepatic transcriptomics, liver, serum, and urine metabolomics as well as microbiota were profiled. RESULTS: WD intake facilitated hepatic aging in WT mice. In an FXR-dependent manner, increased inflammation and reduced oxidative phosphorylation were the primary pathways affected by WD and aging. FXR has a role in modulating inflammation and B cell-mediated humoral immunity which was enhanced by aging. Moreover, FXR dictated neuron differentiation, muscle contraction, and cytoskeleton organization in addition to metabolism. There were 654 transcripts commonly altered by diets, ages, and FXR KO, and 76 of them were differentially expressed in human hepatocellular carcinoma (HCC) and healthy livers. Urine metabolites differentiated dietary effects in both genotypes, and serum metabolites clearly separated ages irrespective of diets. Aging and FXR KO commonly affected amino acid metabolism and TCA cycle. Moreover, FXR is essential for colonization of age-related gut microbes. Integrated analyses uncovered metabolites and bacteria linked with hepatic transcripts affected by WD intake, aging, and FXR KO as well as related to HCC patient survival. CONCLUSION: FXR is a target to prevent diet or age-associated metabolic disease. The uncovered metabolites and microbes can be diagnostic markers for metabolic disease.

12.
Crit Rev Food Sci Nutr ; 63(26): 7945-7982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35352583

RESUMO

Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.


Assuntos
Aleitamento Materno , Leite Humano , Lactente , Feminino , Humanos , Criança , Estado Nutricional , Cognição
13.
Phytopathology ; 113(2): 299-308, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35984373

RESUMO

Spiroplasma citri is the pathogen that causes citrus stubborn disease (CSD). Infection of citrus with S. citri has been shown to cause leaf mottling, reduce fruit yield, and stunt tree growth. Fruit from trees exhibiting symptoms of CSD are misshapen and discolored. The symptoms of CSD are easily confused with nutrient deficiencies or symptoms of citrus greening disease. In this study, young Washington navel oranges (Citrus sinensis) were graft-inoculated with budwood originating from trees confirmed to be infected with S. citri. Leaf samples were collected monthly for 10 months for metabolomics and differential gene expression analyses. Significant differences in the concentration of metabolites and expressed genes were observed between control and S. citri-infected trees throughout the experiment. Metabolites and genes associated with important defense and stress pathways, including jasmonic acid signaling, cell wall modification, amino acid biosynthesis, and the production of antioxidant and antimicrobial secondary metabolites, were impacted by S. citri throughout the study, and even prior to symptom development. This work fills a current gap in knowledge surrounding the pathogenicity of S. citri and provides an updated mechanistic explanation for the development of CSD symptoms in S. citri-infected plants.


Assuntos
Citrus sinensis , Doenças das Plantas , Spiroplasma citri , Transcriptoma , Citrus sinensis/genética , Citrus sinensis/microbiologia , Spiroplasma citri/patogenicidade , Spiroplasma citri/fisiologia , Metaboloma , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia
14.
Nat Commun ; 13(1): 5538, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130949

RESUMO

Maternal obesity during pregnancy is associated with neurodevelopmental disorder (NDD) risk. We utilized integrative multi-omics to examine maternal obesity effects on offspring neurodevelopment in rhesus macaques by comparison to lean controls and two interventions. Differentially methylated regions (DMRs) from longitudinal maternal blood-derived cell-free fetal DNA (cffDNA) significantly overlapped with DMRs from infant brain. The DMRs were enriched for neurodevelopmental functions, methylation-sensitive developmental transcription factor motifs, and human NDD DMRs identified from brain and placenta. Brain and cffDNA methylation levels from a large region overlapping mir-663 correlated with maternal obesity, metabolic and immune markers, and infant behavior. A DUX4 hippocampal co-methylation network correlated with maternal obesity, infant behavior, infant hippocampal lipidomic and metabolomic profiles, and maternal blood measurements of DUX4 cffDNA methylation, cytokines, and metabolites. We conclude that in this model, maternal obesity was associated with changes in the infant brain and behavior, and these differences were detectable in pregnancy through integrative analyses of cffDNA methylation with immune and metabolic factors.


Assuntos
Ácidos Nucleicos Livres , Obesidade Materna , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Ácidos Nucleicos Livres/metabolismo , Citocinas/metabolismo , DNA/metabolismo , Metilação de DNA , Epigênese Genética , Feminino , Humanos , Lactente , Macaca mulatta/genética , Gravidez , Fatores de Transcrição/metabolismo
15.
Metabolites ; 12(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36144233

RESUMO

Prenatal exposure to phthalates, a family of endocrine-disrupting plasticizers, is associated with disruption of maternal metabolism and impaired neurodevelopment. We investigated associations between prenatal phthalate exposure and alterations of both the maternal third trimester serum metabolome and the placental metabolome at birth, and associations of these with child neurodevelopmental outcomes using data and samples from the Markers of Autism Risk in Babies Learning Early Signs (MARBLES) cohort. The third trimester serum (n = 106) and placental (n = 132) metabolomes were investigated using 1H nuclear magnetic resonance spectroscopy. Children were assessed clinically for autism spectrum disorder (ASD) and cognitive development. Although none of the urinary phthalate metabolite concentrations were associated with maternal serum metabolites after adjustment for covariates, mixture analysis using quantile g-computation revealed alterations in placental metabolites with increasing concentrations of phthalate metabolites that included reduced concentrations of 2-hydoxybutyrate, carnitine, O-acetylcarnitine, glucitol, and N-acetylneuraminate. Child neurodevelopmental outcome was not associated with the third trimester serum metabolome, but it was correlated with the placental metabolome in male children only. Maternal phthalate exposure during pregnancy is associated with differences in the placental metabolome at delivery, and the placental metabolome is associated with neurodevelopmental outcomes in males in a cohort with high familial ASD risk.

16.
Metabolites ; 12(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36005637

RESUMO

Maternal gestational obesity is associated with elevated risks for neurodevelopmental disorder, including autism spectrum disorder. However, the mechanisms by which maternal adiposity influences fetal developmental programming remain to be elucidated. We aimed to understand the impact of maternal obesity on the metabolism of both pregnant mothers and their offspring, as well as on metabolic, brain, and behavioral development of offspring by utilizing metabolomics, protein, and behavioral assays in a non-human primate model. We found that maternal obesity was associated with elevated inflammation and significant alterations in metabolites of energy metabolism and one-carbon metabolism in maternal plasma and urine, as well as in the placenta. Infants that were born to obese mothers were significantly larger at birth compared to those that were born to lean mothers. Additionally, they exhibited significantly reduced novelty preference and significant alterations in their emotional response to stress situations. These changes coincided with differences in the phosphorylation of enzymes in the brain mTOR signaling pathway between infants that were born to obese and lean mothers and correlated with the concentration of maternal plasma betaine during pregnancy. In summary, gestational obesity significantly impacted the infant systemic and brain metabolome and adaptive behaviors.

17.
J Pediatr Gastroenterol Nutr ; 75(4): 535-542, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881967

RESUMO

OBJECTIVES: To compare the impact of two probiotic supplements on fecal microbiota and metabolites, as well as on gut inflammation in human milk-fed preterm infants. METHODS: In this single-center observational cohort study, we assessed the effects of Bifidobacterium longum subsp. infantis or Lactobacillus reuteri supplementation on the infant gut microbiota by 16S rRNA gene sequencing and fecal metabolome by 1 H nuclear magnetic resonance spectroscopy. Fecal calprotectin was measured as a marker of enteric inflammation. Aliquots of human or donor milk provided to each infant were also assessed to determine human milk oligosaccharide (HMO) content. RESULTS: As expected, each probiotic treatment was associated with increased proportions of the respective bacterial taxon. Fecal HMOs were significantly higher in L. reuteri fed babies despite similar HMO content in the milk consumed. Fecal metabolites associated with bifidobacteria fermentation products were significantly increased in B. infantis supplemented infants. Fecal calprotectin was lower in infants receiving B. infantis relative to L. reuteri ( P < 0.01, Wilcoxon rank-sum test) and was negatively associated with the microbial metabolite indole-3-lactate (ILA). CONCLUSIONS: This study demonstrates that supplementing an HMO-catabolizing Bifidobacterium probiotic results in increased microbial metabolism of milk oligosaccharides and reduced intestinal inflammation relative to a noncatabolizing Lactobacillus probiotic in human milk-fed preterm infants. In this context, Bifidobacterium may provide greater benefit in human milk-fed infants via activation of the microbiota-metabolite-immune axis.


Assuntos
Microbiota , Probióticos , Bifidobacterium , Bifidobacterium longum subspecies infantis/metabolismo , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Inflamação , Complexo Antígeno L1 Leucocitário/metabolismo , Oligossacarídeos/metabolismo , RNA Ribossômico 16S
18.
Front Pediatr ; 10: 856951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558362

RESUMO

Early childhood nutrition drives the development of the gut microbiota. In contrast to breastfeeding, feeding infant formula has been shown to impact both the gut microbiota and the serum metabolome toward a more unfavorable state. It is thought that probiotics may alter the gut microbiota and hence create a more favorable metabolic outcome. To investigate the impact of supplementation with Lactobacillus paracasei spp. paracasei strain F-19 on the intestinal microbiota and the serum metabolome, infants were fed a formula containing L. paracasei F19 (F19) and compared to a cohort of infants fed the same standard formula without the probiotic (SF) and a breast-fed reference group (BF). The microbiome, as well as serum metabolome, were compared amongst groups. Consumption of L. paracasei F19 resulted in lower community diversity of the gut microbiome relative to the SF group that made it more similar to the BF group at the end of the intervention (4 months). It also significantly increased lactobacilli and tended to increase bifidobacteria, also making it more similar to the BF group. The dominant genus in the microbiome of all infants was Bifidobacterium throughout the intervention, which was maintained at 12 months. Although the serum metabolome of the F19 group was more similar to the group receiving the SF than the BF group, increases in serum TCA cycle intermediates and decreases in several amino acids in the metabolome of the F19 group were observed, which resulted in a metabolome that trended toward the BF group. Overall, L. paracasei F19 supplementation did not override the impact of formula-feeding but did impact the microbiome and the serum metabolome in a way that may mitigate some unfavorable metabolic impacts of formula-feeding.

19.
Neurochem Int ; 156: 105294, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35104537

RESUMO

It is known that brain energy metabolites such as ATP are quickly depleted during postmortem ischemia; however, a comprehensive assessment on the effects of preceding hypercapnia/ischemia and the dissection process on the larger brain metabolome remains lacking. This study sought to address this unknown by measuring aqueous metabolites impacted by hypercapnia/ischemia and brain dissection using Nuclear Magnetic Resonance. Metabolites were measured in rats subjected to 1) high energy head-focused microwave irradiation (control group); 2) CO2-induced hypercapnia/ischemia followed by immediate microwave irradiation; 3) CO2 followed by decapitation and then microwave irradiation ∼6.4 min later, to simulate a postmortem interval equivalent to typical dissection times; and 4) CO2-induced hypercapnia/ischemia followed by dissection within ∼6 min (no microwave fixation) to test the effects of brain dissection on the metabolome. Compared to control rats subjected to head-focused microwave irradiation, concentrations of high-energy phosphate metabolites and glucose were significantly reduced, while ß-hydroxybutyrate and lactate were increased in rats subjected to all other treatments. Several amino acids and neurotransmitters (GABA) increased by hypercapnia/ischemia and dissection. Sugar donors involved in glycosylation decreased and nucleotides decreased or increased following hypercapnia/ischemia and dissection. sn-Glycero-3-phosphocholine decreased and its choline byproduct increased in all groups relative to controls, indicating postmortem changes in lipid turnover. Antioxidants increased following hypercapnia/ischemia but decreased to control levels following dissection. This study demonstrates substantial post-mortem changes in brain energy and glycosylation pathways, as well as protein, nucleotide, neurotransmitter, lipid, and antioxidant turnover due to hypercapnia/ischemia and dissection. Changes in phosphate donors, glycosylation and amino acids reflect post-translational modification and protein degradation processes that persist post-mortem. Microwave irradiation is necessary for accurately capturing in vivo brain metabolite concentrations.


Assuntos
Isquemia Encefálica , Hipercapnia , Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Dióxido de Carbono/metabolismo , Hipercapnia/metabolismo , Isquemia/metabolismo , Lipídeos , Metaboloma , Neurotransmissores/metabolismo , Fosfatos/metabolismo , Ratos
20.
Appl Environ Microbiol ; 88(2): e0170721, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34757822

RESUMO

Human milk enriches members of the genus Bifidobacterium in the infant gut. One species, Bifidobacterium pseudocatenulatum, is found in the gastrointestinal tracts of adults and breastfed infants. In this study, B. pseudocatenulatum strains were isolated and characterized to identify genetic adaptations to the breastfed infant gut. During growth on pooled human milk oligosaccharides (HMOs), we observed two distinct groups of B. pseudocatenulatum, isolates that readily consumed HMOs and those that did not, a difference driven by variable catabolism of fucosylated HMOs. A conserved gene cluster for fucosylated HMO utilization was identified in several sequenced B. pseudocatenulatum strains. One isolate, B. pseudocatenulatum MP80, which uniquely possessed GH95 and GH29 α-fucosidases, consumed the majority of fucosylated HMOs tested. Furthermore, B. pseudocatenulatum SC585, which possesses only a single GH95 α-fucosidase, lacked the ability to consume the complete repertoire of linkages within the fucosylated HMO pool. Analysis of the purified GH29 and GH95 fucosidase activities directly on HMOs revealed complementing enzyme specificities with the GH95 enzyme preferring 1-2 fucosyl linkages and the GH29 enzyme favoring 1-3 and 1-4 linkages. The HMO-binding specificities of the family 1 solute-binding protein component linked to the fucosylated HMO gene cluster in both SC585 and MP80 are similar, suggesting differential transport of fucosylated HMO is not a driving factor in each strain's distinct HMO consumption pattern. Taken together, these data indicate the presence or absence of specific α-fucosidases directs the strain-specific fucosylated HMO utilization pattern among bifidobacteria and likely influences competitive behavior for HMO foraging in situ. IMPORTANCE Often isolated from the human gut, microbes from the bacterial family Bifidobacteriaceae commonly possess genes enabling carbohydrate utilization. Isolates from breastfed infants often grow on and possess genes for the catabolism of human milk oligosaccharides (HMOs), glycans found in human breast milk. However, catabolism of structurally diverse HMOs differs between bifidobacterial strains. This study identifies key gene differences between Bifidobacterium pseudocatenulatum isolates that may impact whether a microbe successfully colonizes an infant gut. In this case, the presence of complementary α-fucosidases may provide an advantage to microbes seeking residence in the infant gut. Such knowledge furthers our understanding of how diet drives bacterial colonization of the infant gut.


Assuntos
Bifidobacterium pseudocatenulatum , Leite Humano , Bifidobacterium pseudocatenulatum/metabolismo , Feminino , Humanos , Hidrolases/metabolismo , Lactente , Leite Humano/química , Oligossacarídeos/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...